

2017 Marking Scheme

Mark Required		% condidatos achievina anada				
(/100)	%	% candidates achieving grade				
74+	74%	35.2%				
63+	63%	21.8%				
52+	52%	19.4%				
46+	46%	8.6%				
< 46	<46%	15.0%				
Section: Multiple Choice Extended Answer Assignment						
			Assignment 14.7 /20			
	(/100) 74+ 63+ 52+ 46+ <46 Multiple	(/100) % 74+ 74% 63+ 63% 52+ 52% 46+ 46% <46	(/100) % % candidate 74+ 74% 63+ 63% 52+ 52% 46+ 46% ×46 <46%			

2017 National 5 Chemistry Marking Scheme									
MC Qu	Answer	% Pupils Correct	Reasoning						
1	D	91	Rate = $\frac{\Delta \text{quantity}}{\Delta \text{time}}$ = $\frac{2g}{30s}$ = 0.0667 g s ⁻¹						
2	С	90	▲A if atomic number = 24 then number of protons = 24 ▲B if atomic number = 45 then number of protons = 45 △C atomic number = no of protons = 21 and mass no.= protons+neutrons = 21+24 = 45 ▲D if atomic number = 24 then number of protons = 24						
3	A	67	Dichromate ion formula is $Cr_2O_7^{2-}$.: $Cr_2O_7^{2-}$ ion must be balanced by a 2+ ion .: Zn^{2+}						
4	D	60	 ▲ A Magnesium melts at 650°C ∴ temperature is 730°C so magnesium is liquid ▲ B Magnesium melts at 650°C ∴ temperature is 730°C so magnesium is liquid ▲ C Magnesium has density 1.74 g cm⁻³ and floats in magnesium chloride (2.32g cm⁻³) ▲ D Magnesium formed is a liquid at 730°C and floats in molten magnesium chloride as magnesium metal has a lower density. 						
5	A	58	A base is a chemical which neutralises an acid to form water e.g. metal hydroxides (alkalis), metal oxides and metal carbonates are bases						
6	В	72	Spectator ions appear chemically unchanged on both sides of a chemical equation: $K^{*} \text{ appears on both sides of equation}$ $Ag^{*}_{(aq)} + NO_{3^{-}(aq)} + K^{+}_{(aq)} + Cl^{-}_{(aq)} \rightarrow AgCl_{(s)} + K^{+}_{(aq)} + NO_{3^{-}(aq)}$						
7	С	86	NO_3^- appears on both sides of equation $2H_2O_2 \longrightarrow 2H_2O + O_2$						
8	В	70	$gfm = \frac{mass}{no. of mol} = \frac{7g}{0.25mol} = 28g mol^{-1}$ $\boxed{\blacksquare} A gfm C_2H_6 = (2\times12)+(6\times1) = 24+6 = 30g$ $\boxed{\blacksquare} B gfm C_2H_4 = (2\times12)+(4\times1) = 24+4 = 28g$ $\boxed{\blacksquare} C gfm C_3H_8 = (3\times12)+(8\times1) = 36+8 = 44g$ $\boxed{\blacksquare} D gfm C_3H_6 = (3\times12)+(6\times1) = 36+6 = 42g$						
9	A	56	Image: A no of mol = volume x concentration = 0.1 litres x 0.4mol l ⁻¹ = 0.04mol Image: B no of mol = volume x concentration = 0.2 litres x 0.3mol l ⁻¹ = 0.06mol Image: C no of mol = volume x concentration = 0.3 litres x 1.0mol l ⁻¹ = 0.3mol Image: D no of mol = volume x concentration = 0.4 litres x 0.5mol l ⁻¹ = 0.2mol						
10	A	85	 A C7H16 gives a general formula of CnH2n+2. Alkanes have general formula CnH2n+2. B C7H14 gives a general formula of CnH2n. Alkanes have general formula CnH2n+2. C C7H12 gives a general formula of CnH2n-2. Alkanes have general formula CnH2n+2. C C7H10 gives a general formula of CnH2n-4. Alkanes have general formula CnH2n+2. 						
11	D	83	 ☑ A X is an alkene ∴ has C=C double bond ∴ will decolourise bromine solution quickly ☑ B Y is a cycloalkane ∴ no C=C double bond ∴ does not decolourise bromine solution ☑ C Y is a cycloalkane ∴ no C=C double bond ∴ does not decolourise bromine solution ☑ D X (alkene) will decolourise bromine and Y (cycloalkane) will not decolourise 						
12	С	50	Element in Fuel Carbon Hydrogen Sulphur Product of Combustion Carbon Dioxide Water Sulphur Dioxide						
13	С	81	Vinegar is a dilute solution of ethanoic acid CH3COOH						
14	B	92	 A endothermic reactions absorb energy from the surroundings (drops the temp) B exothermic reactions release energy to the surroundings (raises the temp) C energy required to start reaction not related to the energy given off D a reaction must have an energy change to be exothermic 						

			III A Chrystyne de sur id e equalent natural
15 D		A Structure shown is a covalent network	
	77	B Structure shown is an ionic lattice	
		EC Structure shown is a molecular covalent	
			☑D Structure shown is a metallic lattice
	16 C 7		🗷 A tin is a medium reactivity metal and is found combined in the Earth's crust
1/		70	🗷 B magnesium is a upper reactivity metal and found combined in the Earth's crust
16		6 79	☑C gold is a very unreactive metal and found uncombined in the Earth's crust
			No sodium is a very reactivity metal and found combined in the Earth's crust
			☑A Oxygen is not an essential element for healthy plant growth
47		70	B Nitrogen in an essential element for plants and found in fertilisers
17	A		EC Potassium in an essential element for plants and found in fertilisers
		• -	ED Phosphorus in an essential element for plants and found in fertilisers
			EA Nitric acid is made by the Ostwald Process
	•	B 95	
18	R		☑B Ammonium is made by the Haber Process
			EC Alkenes can be made by the dehydration reaction of alcohols by removing water
		D Esters are made by the condensation of alcohols and carboxylic acids	
			oxtimesA Barium sulphate is an insoluble salt and can be made by a precipitation reaction
19	Λ	A 64	B Lithium nitrate is soluble and cannot be made by a precipitation reaction
12	A		🗷 C calcium chloride is soluble and cannot be made by a precipitation reaction
			🗷 D ammonium phosphorus is soluble and cannot be made by a precipitation reaction
			A standard solution is a solution whose concentration is accurately known
20	$\boldsymbol{\mathcal{C}}$	C 40	and used in titration to work out the number of moles or concentration of a
20	し		
			second substance.

2017 National 5 Chemistry Marking Scheme							
Long Qu	Answer	Reasoning					
1a	Isotopes	Same atomic number but different mass number number of protons					
1b	Different number of neutrons in each	IsotopeProtonsNeutronsElectrons ${}^{36}_{18}$ Ar1836-18 = 1818 ${}^{38}_{18}$ Ar1838-18 = 2018 ${}^{40}_{18}$ Ar1840-18 = 2218					
1c	36	Relative atomic mass is the average mass of the different isotopes of the same element in a sample. As the average mass is 36.2 of isotopes with masses of 36, 38 and 40 the mass abundant isotope must be 36 as the average is closest to 36.					
2a	Nanotube	Problem Solving: Selecting information from passage					
2b	Lithium	Problem Solving: Selecting information from passage					
2c	20.5	m=41g gfm H ₂ = 2g mol ⁻¹ no of moles = <u>mass</u> = <u>41g</u> 2g mol ⁻¹ = 20.5 mol					
За	Diagram showing:						
3b	tetrahedral	HCI H2O NH3 CH4 H H Linear Angular Trigonal Pyramidal Tetrahedral					
3c	Gains one electron	$\begin{array}{ccc} CI &+ e^{-} &\longrightarrow & CI^{-} \\ 2,8,7 & & 2,8,8 \end{array}$					
3d	low no high no	Chloromethane CH ₃ Cl is covalent molecular because it contains non-metals in the compound and is a gas at room temperature indicating a low melting point. Covalent substances do not conduct in any state. Sodium chloride is ionic because it is a compound of a metals and non-metal. Ionic compounds are all have high melting points and do no conduct in the solid state.					
4a (i)	waste gases hot air impurities iron	Problem Solving: Completing diagram labels from passage					
4 a(ii)	Iron would turn into solid below 1538°C	The iron needs to be molten for it to be removed easily from the blast furnace. If the iron metal were to freeze into a solid then it would have to be scraped out of the furnace.					
4b	$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$	The reduction step $Fe^{3+} + e^- \rightarrow Fe^{2+}$ is in the data booklet. The reversal of the equation means the equation becomes oxidation					
5a (i)	14 days	14 daysphosphorus-32 content = 100%, Time= Odays phosphorus-32 content = 50%, Time= 14dayshalf-life = 14 days					

5a (ii)	42days	Mass (g) No of half lives 20 0 10 1 5 2 2.5 3						
5b	Beta β							
6	Open Question	3 mark answer2 mark answer1 mark answerDemonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a 						
7a	Carboxyl group	−O−H → C − OH hydroxyl group hydroxyl group						
7 b(i)	н н н н−с−с−с−с″ н н н т он	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
7b(ii)	Answer to include:	Propanoic acid has three carbons and butanoic acid has four carbons. As number of carbons increases, melting point increases.						
8a (i)	Glowed very brightly	Magnesium is more reactive than zinc so would react faster and brighter.						
8a (ii)	Faster reaction	Powders react faster than lumps as powder has lower particle size						
8b	Magnesium	MgO contains Mg ²⁺ ions \therefore Mg \longrightarrow Mg ²⁺ + 2e ⁻ (oxidation)						
9a	Same chemical properties Same general formula	Homologous series (e.g. alkanes, alkenes, cycloalkanes) have						
9b	isomers	same molecular formula different structural formula (structure)						
9 c(i)	One answer from:	The longer the carbon chain the longer Branched chain isomers take less time to travel through the time to get through column column compared to their straight chain isomers						
9c(ii)	Line between 1 st and 2 nd peak	Propane would take longer to pass through the column than ethane (1 st peak) as it has a longer chain length. Propane would pass through the column quicker than the 2 nd set of peaks (isomers of butane) as it has a shorter chain length.						
10a(i)	aluminium copper aluminium copper sulphate sulphate	In an electrochemical cell, a metal is placed in a solution of that metal. Aluminium must be the metal on the left of the cell and copper the metal the right as electrons flow from the left to the right. This is because aluminium is higher up the electrochemical series than copper.						
10a(ii)	3Cu²+ + 2AI ↓ 3Cu + 2AI ³⁺	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
10b	15.8	gfm Al ₂ (SO ₄) ₃ = (2x27)+(3x32)+(12x16) = 54+96+192 = 342 %Al = total mass of Al gfm Al ₂ (SO ₄) ₃ x100 = (2x27)/(342) x100 = 54/(342) x100 = 15.8%						

11a	Answer to include:	Non-metal oxides like SO_2 dissolve in water to form acids. As acid is formed the pH number will decrease below 7							
11b	As temp increases solubility decreases	Problem Solving: Drawing conclusion from a line graph							
12a	C=C double bond or -OH group	C=C double bonds are the functional groups found in alkenes Hydroxyl -OH groups are the functional group found in alcohols							
12b	Esters	Geraniol is an alcohol due to its -OH hydroxyl group. Alcohols react with carboxylic acid to form esters e.g. geraniol + propanoic acid —> geranyl propanoate + wate alcohol + carboxylic acid —> ester + wate							
12c	$1 \text{ mol geraniol} = (10 \times 12) + (18 \times 1) + (1 \times 16) = 120 + 18 + 16 = 154g$ $\mathbf{no. of mol} = \frac{\mathbf{mass}}{\mathbf{gfm}} = \frac{15.4}{154} = 0.1 \text{ mol}$ $geraniol + \text{ propanoic acid} \longrightarrow geranyl \text{ propanoat}$ $C_{10}H_{18}O + C_{3}H_{6}O_{2} \longrightarrow C_{13}H_{22}O_{2}$ $1 \text{ mol} \qquad 1 \text{ mol}$ $0.1 \text{ mol} \qquad 0.1 \text{ mol}$ $1 \text{ mol geranyl propanoate} = (13 \times 12) + (22 \times 1) + (2 \times 16) = 156 + 22 + 32 = 210g$ $\mathbf{mass} = \mathbf{no. of mol} \times \mathbf{gfm} = 0.1 \times 210 = 21.0c$								
13a	CnH2n-2	$ \begin{array}{ c c c c c c } \hline Alkyne & Propyne & But-1-yne & Pent-1-yne \\ \hline Molecular Formula & C_3H_4 & C_4H_6 & C_5H_8 \\ \hline If n=3 & If n=4 & If n=5 \\ General Formula & 2n-2 = (2x3)-2 = 4 & 2n+2 = (2x4)-2 = 6 & 2n+2 = (2x5)-2 = 8 \\ \hline \therefore & C_nH_{2n-2} & \hline \therefore & C_nH_{2n-2} & \hline \therefore & C_nH_{2n-2} \\ \hline \end{array} $							
13b(i)		The repeating units can be joined together and when the brackets are removed the original polymer is drawn.							
13b(ii)	Addition	Addition polymerisation usually involves a C=C double bond opening up to leave a C-C single bond as the monomers join together to form the polymer. The C=C triple bond in ethyne opens up to leave a C=C double bond as the monomers join together to form the polymer poly(ethyne)							
13c(i)	н н - н-с-с≡с-с-н - н н	H Br Br H H H							
13c(ii)	Bromines must be on adjacent carbons	The bromine atoms must be on carbons next door to each other if the triple bond is to form.							
14a(i)	ӉӉӉӉӉӉ н- <i>с-с-с-с-с-с</i> -он ннннн	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							

14a(ii)	188kJ	Alcohol	Propan-1-ol	Butan-1-o	Pentan-1-ol	Hexan-1-ol	Heptan-1-ol
		Energy Released (kJ)	158	170	179	185	-
		Difference	18	3kJ	9kJ 6	kJ (3	kJ)
		Prediction	-	-	-	-	188kJ
14b	3.91	$E_h = cm\Delta T \therefore C = \frac{E_h}{m \times \Delta T} = \frac{13.3}{(0.1 \times 34)} = 3.91 \text{ kJ kg}^{-1} \circ C^{-1}$					
	Open Question	3 mark answer		2 mark answer		1 mark answer	
15		Demonstrates a <u>goo</u> understanding of th involved. A good com the chemistry has p logically correct, inc statement of the pr involved and the app these to respond to	of the chemistry bd comprehension of has provided in a ct, including a the principles me application of the statement (s) which are relevant to the situation, showing that the problem is understood. understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood. understanding of the chemistry involved. The candidate has m some statement(s) which are relevant to the situation, show that at least a little of the chemistry within the problem			f the chemistry andidate has made t(s) which are situation, showing little of the	